Farms.com Home   Expert Commentary

Taking Agriculture To A Higher Level Of Precision

Feb 28, 2014

By Robert Burns

AgriLife engineer working on automated measuring of individual plants in real time

Imagine, if you will, a tractor pulling a fertilizer wagon travelling at 8 to 9 mph along a field of thousands of sorghum test plants.

As the tractor moves through the field plots, an onboard computer linked to sensors measures everything from plant height and development to nitrogen needs.

While you’re at it, imagine the tractor is driverless; that its operation may be monitored remotely by a human, but the minute-to-minute, hour-to-hour decisions are being made by computer software, said Dr. Alex Thomasson, Texas A&M AgriLife Research agricultural engineer, College Station.

And though such a scenario might sound like science fiction, the reality is not that far away, Thomasson said.

Thomasson has been developing hardware and software for precision agriculture and remote sensing for much of his career.

To date, precision agriculture has been largely about adjusting inputs to known variability within a field. For example, instead of applying fertilizer at the same rate across a 160-acre center pivot circle, precision agriculture systems use data on soil type and residual fertilizer variability to define different management zones within the 160 acres. Fertilizer is then applied to the management zones at optimal rates controlled by a GPS/computer-equipped tractor or through the irrigation system.


One of the prototype sensors Dr. Alex Thomasson and colleagues are proposing to use for taking measurements of energy sorghum variety trial plants. Such a system has the potential to take automated measurements of thousands of plants individually, at a much higher level of accuracy than humans -- and even work at night. (Texas A&M AgriLife Extension Service photo by Robert Burns)

One of the prototype sensors Dr. Alex Thomasson and colleagues are proposing to use for taking measurements of energy sorghum variety trial plants. Such a system has the potential to take automated measurements of thousands of plants individually, at a much higher level of accuracy than humans — and even work at night.

But Thomasson wants to take precision agriculture to another level. He wants to develop sensor/computer hardware and software that can determine individual plant status real time, as the tractor automatically transverses the field.

Thomasson is currently working on a system that will be able to aid plant breeders in sorting through the thousands or even tens of thousands of plants for the development of new varieties.

A team comprised of Thomasson; Dr. Bill Rooney, AgriLife Research plant breeder; and John Mullet, AgriLife Research biochemist, is designing such a system for selecting energy sorghums – cultivars used to produce bioenergy rather than food stocks.

“In general, energy crops are likely to be produced with minimal inputs in terms of nutrients, water, etc.,” Thomasson said. “Therefore, developing cultivars that have high yield, drought tolerance and high nitrogen use efficiency is of vital importance to a successful sorghum-based energy supply industry.”
 

Click here to see more...