Farms.com Home   News

Ag Robot Speeds Data Collection, Analyses Of Crops As They Grow

 
Agricultural and biological engineering professor Girish Chowdhary is leading a team that includes crop scientists, computer scientists and engineers in developing TerraSentia, a crop phenotyping robot.
 
A new lightweight, low-cost agricultural robot could transform data collection and field scouting for agronomists, seed companies and farmers.
 
The TerraSentia crop phenotyping robot, developed by a team of scientists at the University of Illinois, will be featured at the 2018 Energy Innovation Summit Technology Showcase in National Harbor, Maryland, on March 14.
 
Traveling autonomously between crop rows, the robot measures the traits of individual plants using a variety of sensors, including cameras, transmitting the data in real time to the operator's phone or laptop computer. A custom app and tablet computer that come with the robot enable the operator to steer the robot using virtual reality and GPS.
 
TerraSentia is customizable and teachable, according to the researchers, who currently are developing machine-learning algorithms to "teach" the robot to detect and identify common diseases, and to measure a growing variety of traits, such as plant and corn ear height, leaf area index and biomass.
 
"These robots will fundamentally change the way people are collecting and utilizing data from their fields," said U. of I. agricultural and biological engineering professor Girish Chowdhary. He is leading a team of students, engineers and postdoctoral researchers in development of the robot.
 
At 24 pounds, TerraSentia is so lightweight that it can roll over young plants without damaging them. The 13-inch-wide robot is also compact and portable: An agronomist could easily toss it on a truck seat or in a car trunk to transport it to the field, Chowdhary said.
 
Automating data collection and analytics has the potential to improve the breeding pipeline by unlocking the mysteries of why plant varieties respond in very different ways to environmental conditions, said U. of I. plant biology professor Carl Bernacchi, one of the scientists collaborating on the project.
 
Data collected by the crop-scouting robot could help plant breeders identify the genetic lineages likely to produce the best quality and highest yields in specific locations, Bernacchi said.
 
He and Stephen P. Long, a Stanley O. Ikenberry Endowed Chair and the Gutgsell Endowed University Professor of Crop Sciences and Plant Biology at Illinois, helped determine which plant characteristics were important for the robot to measure.
 
"It will be transformative for growers to be able to measure every single plant in the field in a short period of time," Bernacchi said. "Crop breeders may want to grow thousands of different genotypes, all slightly different from one another, and measure each plant quickly. That's not possible right now unless you have an army of people - and that costs a lot of time and money and is a very subjective process.
 
"A robot or swarm of robots could go into a field and do the same types of things that people are doing manually right now, but in a much more objective, faster and less expensive way," Bernacchi said.
 
TerraSentia fills "a big gap in the current agricultural equipment market" between massive machinery that cultivates or sprays many acres quickly and human workers who can perform tasks requiring precision but move much more slowly, Chowdhary said.
Click here to see more...

Trending Video

Moving Ag Research Forward Through Collaboration

Video: Moving Ag Research Forward Through Collaboration



BY: Ashley Robinson

It may seem that public and private researchers have different goals when it comes to agricultural research. However, their different strategies can work in tandem to drive agricultural research forward. Public research may focus more on high-risk and applied research with federal or outside funding, while private sector researchers focus more on research application.

“For me, the sweet spot for public private sector research is when we identify problems and collaborate and can use that diverse perspective to address the different aspects of the challenge. Public sector researchers can work on basic science high risk solutions as tools and technologies are developed. They then can work with their private sector partners who prototype solutions,” Mitch Tuinstra, professor of plant breeding and genetics in Purdue University’s Department of Agronomy, said during the Jan. 10 episode of Seed Speaks.

Public researchers they have the flexibility to be more curiosity driven in their work and do discovery research. This is complimentary to private research, which focuses on delivering a product, explained Jed Christianson, canola product design lead for Bayer CropScience, explained during the episode.

“As a seed developer, we worry about things like new crop diseases emerging. Having strong public sector research where people can look into how a disease lifecycle cycle works, how widespread is it and what damage it causes really helps inform our product development strategies,” he added.

It’s not always easy though to develop these partnerships. For Christianson, it’s simple to call up a colleague at Bayer and start working on a research project. Working with someone outside of his company requires approvals from more people and potential contracts.

“Partnerships take time, and you always need to be careful when you're establishing those contracts. For discoveries made within the agreement, there need to be clear mechanisms for sharing credits and guidelines for anything brought into the research to be used in ways that both parties are comfortable with,” Christianson said.

Kamil Witek, group leader of 2Blades, a non-profit that works with public and private ag researchers, pointed out there can be limitations and challenges to these partnerships. While private researchers are driven by being able to make profits and stay ahead of competitors, public researchers may be focused on information sharing and making it accessible to all.

“The way we deal with this, we work in this unique dual market model. Where on one hand we work with business collaborators, with companies to deliver value to perform projects for them. And at the same time, we return the rights to our discoveries to the IP to use for the public good in developing countries,” Witek said during the episode.

At the end of the day, the focus for all researchers is to drive agricultural research forward through combining the knowledge, skills and specializations of the whole innovation chain, Witek added.

“If there's a win in it for me, and there's a win in it for my private sector colleagues in my case, because I'm on the public side, it’s very likely to succeed, because there's something in it for all of us and everyone's motivated to move forward,” Tuinstra said.