Farms.com Home   News

Shic-Funded Study Looks To Other Industries For Infectious Aerosol Biocontainment Ideas

A project to evaluate technologies to prevent the spread of infectious bioaerosols is making progress. Led by Dr. Montse Torremorell at the University of Minnesota, the project is identifying existing and emerging technologies across different industries for their ability to contain bioaerosols in the face of swine disease outbreaks. Next steps will be to research feasibility and cost effectiveness of potential biocontainment technologies.

Currently the group is writing a report on the technologies to be considered for their implementation in agricultural settings. Technologies identified thus far include fibrous filtration, ionization, bipolar ionization, ultraviolet light type C, ultraviolet light type A, electrostatic precipitation, microwave, photo electrochemical oxidation, non-thermal plasmas, and air filters coated with antimicrobial materials.

Fibrous filtration, with 11 references in the review, is the most well-established and widely applied approach for biocontainment. Its method of action is the indiscriminate removal of particles from flowing airstreams. There is a balance between the particle size dependent removal efficiency for a filter, which should be as high as possible, and the pressure drop across the filter for a given flow rate, which is directly related to the energy costs of filter operation. Furthermore, filter loading increases pressure drop but also efficiency, and must be considered in filter application.

Ultraviolet light, with 16 references in the review, is an established route towards pathogen inactivation in aerosols, as nucleic acid molecules readily absorb photons near this wavelength (254 nm). UV-C (and potentially UV-A) sources can be incorporated in-ducts to directly inactivate pathogens in aerosols, in-conjunction with filters to inactivate collected pathogens, and in upper room bulbs to inactivate larger spaces. However, the latter typically cannot be operated continuously, as UV-C can be mutagenic or carcinogenic at high exposure levels.

Electrostatic precipitation, with 10 references in the review, is commonly used in the combustion industry. Electrostatic precipitation is a process wherein particles are unipolarly ionized through interaction with gas phase ions, and ionized particles are exposed to DC electric fields, which lead to their deposition. Electrostatic precipitators (ESPs) are competitive technologies with filters, able to achieve similar-to-better collection efficiencies with minimal pressure drops. They still require periodic cleaning of particles from deposition electrodes, and their performance does change over time as particles deposit.

Fibrous filtration, UV light sources, and ESPs are all established technologies used in commercial and residential and health settings, and all of which could be adopted in biocontainment strategies. There are  more recently developed ionization schemes (16 references), photocatalytic approaches (nine references), and disinfection technologies (13 references) which are still at the developmental stage and need to be tested for efficacy at scales relevant to agricultural biocontainment and tested for animal safety.

Click here to see more...

Trending Video

Season 6, Episode 7: Takeaways from the Second International Conference on Pig Livability

Video: Season 6, Episode 7: Takeaways from the Second International Conference on Pig Livability

This year’s conference fostered open, engaging conversations around current research in the swine industry, bringing together hundreds of attendees from 31 states and six countries. Two leaders who helped organize the event joined today’s episode: Dr. Joel DeRouchey, professor and swine extension specialist in the Department of Animal Sciences and Industry at Kansas State University, and Dr. Edison Magalhaes, assistant professor in the Department of Animal Sciences at Iowa State University. They share key takeaways from the conference, including the importance of integrating data when evaluating whole-herd livability, building a culture of care among employees and adopting new technologies. Above all, the discussion reinforces that this industry remains, at its core, a people business.