Farms.com Home   News

Considerations for Fall Applications of Anhydrous Ammonia

By Dorivar Ruiz Diaz and Christopher Redmond et.al

Soils across Kansas are still running above 50°F at the 4-inch depth in most locations (Figure 1). It is best to delay application of anhydrous ammonia until soil temperatures drop below this threshold. Applying anhydrous ammonia in the fall ahead of the next corn crop has some appeal to producers. For one thing, fall fertilizer application spreads out the workload so there’s more time to focus on corn planting in the spring. Secondly, wet conditions in the spring sometimes prevents producers from applying lower-cost anhydrous ammonia ahead of corn planting, and forces them to apply more expensive sources after planting. Equally important for many producers have been issues with anhydrous ammonia availability at times in the spring.

Average soil temperature

Figure 1. Average soil temperature (°F ) at 4 inches for the 7-day period ending on October 28, 2021. Soil temperatures in individual fields in any given area will vary with differences in vegetative cover, soil texture, soil moisture, and other factors. (Kansas Mesonet)

Despite those advantages, producers should be aware that there is potential for higher nitrogen (N) loss in the spring following a fall application, as a result of nitrification of the ammonium during late winter and very early spring and subsequent leaching, or denitrification.

Reactions of anhydrous ammonia in the soil

When anhydrous ammonia is applied to the soil, a large portion of the ammonia is converted to ammonium (NH4+), and can be bound to clay and organic matter particles within the soil. As long as the nitrogen remains in the ammonium form, it can be retained on the clay and organic matter, and does not readily move in most soils except sandy soils with very low CEC, so leaching is not an issue.

At soil temperatures above freezing, nitrification occurs - ammonium is converted by specific soil microbes into nitrate-N (NO3-). Since this is a microbial reaction, it is very strongly influenced by soil temperatures. The higher the temperature, the quicker the conversion will occur. Depending on soil temperature, pH, and moisture content, it can take 2-3 months or longer to convert all the ammonia applied in the fall to nitrate.

By delaying application until cold weather, most of the applied N can enter the winter as ammonium, and over-winter losses of the applied N will be minimal.

Producers should wait until soil temperatures are less than 50 °F at a depth of 4 inches before applying ammonia in the fall or early winter. Nitrification does not cease below 50 °F, but rather soils will likely become cold enough to limit the nitrification process. In many areas of Kansas, soils may stay warmer than 50 degrees well into late-fall and only freeze for short periods during the winter.

The use of a nitrification inhibitor can help reduce N losses from fall N applications under specific conditions, particularly during periods when soil temperatures warm back up for a period after application.

One should also consider soil physical properties when considering fall application. Fall applications of N for corn should not be made on sandy soils prone to leaching, particularly those over shallow, unprotected aquifers. Rather, fall N applications should focus on deep, medium- to heavy-textured soils where water movement through the profile is slower.

When is nitrogen lost?

When considering fall application of N, keep in mind that loss of N during the fall and winter is not normally a problem in Kansas. The conversion of “protected” ammonium to “loss prone” nitrate during the fall and winter can be minimized by waiting to make applications until soils have cooled, and by using products such as nitrification inhibitors. The fact that essentially all the N may remain in the soil as ammonium all winter, coupled with our dry winters, means minimal N is likely to be lost over winter.

However, soils often warm up early in the spring and allow nitrification to get started well before corn planting. Generally, if the wheat is greening up, nitrification has begun! Thus, one of the potential downsides of fall application is that nitrification can begin in early March, and essentially be complete by late May and June.

Summary

If anhydrous ammonia is to be applied in the fall, there are a number of factors that must be considered, including soil texture, temperature, and soil moisture. Consider the following guidelines:

  • Do not apply anhydrous ammonia in the fall on sandy soils.
  • On silt loam or heavier-textured soils, wait to apply anhydrous ammonia until soil temperatures at the 4-inch depth are below 50 °F. Grass covered 2-inch depth typically reaches the 50 mark around the 20th of November in central Kansas (Figure 2). You can expect the 4-inch depth to lag behind that date depending on soil type and earlier if the ground is bare.  
  • Use a nitrification inhibitor with anhydrous ammonia to help reduce fall nitrification.
  • To check the soil temperature in your area, visit the K-State Research and Extension Weather Data Library at: http://mesonet.k-state.edu/agriculture/soiltemp/

Hutchinson 10SW  Mesonet station

Figure 2. Hutchinson 10SW  Mesonet station 2021 2-inch soil temperature compared to climatology under grass cover. Soil temperatures in individual fields in any given area will vary with differences in vegetative cover, soil texture, soil moisture, and other factors. (Kansas Mesonet)

Source : ksu.edu

Trending Video

Why Port Infrastructure is Key to Growing Canada's Farms and Economy

Video: Why Port Infrastructure is Key to Growing Canada's Farms and Economy

Grain Farmers of Ontario (GFO) knows that strong, modern port infrastructure is vital to the success of Canada’s agriculture. When our ports grow, Ontario grain farmers and Canadian farms grow too—and when we grow, Canada grows.

In this video, we highlight the importance of investing in port infrastructure and how these investments are key to growing Ontario agriculture and supporting global trade. The footage showcases the strength of both Ontario’s farming landscapes and vital port operations, including some key visuals from HOPA Ports, which we are grateful to use in this project.

Ontario’s grain farmers rely on efficient, sustainable ports and seaway systems to move grain to markets around the world. Port investments are crucial to increasing market access, driving economic growth, and ensuring food security for all Canadians.

Why Port Infrastructure Matters:

Investing in Ports = Investing in Farms: Modernized ports support the export of Canadian grain, driving growth in agriculture.

Sustainable Growth: Learn how stronger ports reduce environmental impact while boosting economic stability.

Global Trade Opportunities: Improved port and seaway systems help farmers access new global markets for their grain.

Stronger Communities: Investment in ports means more stable jobs and economic growth for rural communities across Ontario and Canada.

We are proud to support the ongoing investment in port infrastructure and to shine a light on its vital role in feeding the world and securing a prosperous future for Canadian agriculture.

Special thanks to HOPA Ports for providing some of the stunning port footage featured in this video.