Farms.com Home   News

Decomposing Leaves Are A Surprising Source Of Greenhouse Gases

 
Michigan State University scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide. The culprit?
 
Tiny bits of decomposing leaves in soil.
 
This new discovery is featured in the current issue of Nature Geoscience, could help refine nitrous oxide emission predictions as well as guide future agriculture and soil management practices.
 
"Most nitrous oxide is produced within teaspoon-sized volumes of soil, and these so-called hot spots can emit a lot of nitrous oxide quickly," said Sasha Kravchenko, MSU plant, soil and microbial scientist and lead author of the study. "But the reason for occurrence of these hot spots has mystified soil microbiologists since it was discovered several decades ago."
 
Part of the vexation was due, in part, to scientists looking at larger spatial scales. It's difficult to study and label an entire field as a source of greenhouse gas emissions when the source is grams of soil harboring decomposing leaves. Changing the view from binoculars to microscopes will help improve N2O emission predictions, which traditionally are about 50 percent accurate, at best. Nitrous oxide's global warming potential is 300 times greater than carbon dioxide, and emissions are largely driven by agricultural practices.
 
"This work sheds new light on what drives emissions of nitrous oxide from productive farmlands," said John Schade, a program director for the National Science Foundation's Long-Term Ecological Research program, which co-funded the research with NSF's earth sciences division. "We need studies like this to guide the creation of sustainable agricultural practices necessary to feed a growing human population with minimal environmental impact."
 
To unlock the secrets of these N2O hotspots, Kravchenko and her team took soil samples from MSU's Kellogg Biological Station Long-term Ecological Research site. Then in partnership with scientists from the University of Chicago at Argonne National Laboratory, they examined the samples at Argonne's synchrotron scanning facilities, a much more powerful version of a medical CT scanner. The powerful X-ray scanner penetrated the soil and allowed the team to accurately characterize the environments where N2O is produced and emitted.
 
"We found that hotspot emissions happen only when large soil pores are present," Kravchenko said. "The leaf particles act as tiny sponges in soil, soaking up water from large pores to create a micro-habitat perfect for the bacteria that produce nitrous oxide."
 
Not as much N2O is produced in areas where smaller pores are present. Small pores, such as in clay soils, hold water more tightly so that it can't be soaked up by the leaf particles. Without additional moisture, the bacteria aren't able to produce as much nitrous oxide. Small pores also make it harder for the gas produced to leave the soil before being consumed by other bacteria.
Click here to see more...

Trending Video

my new barn is destroyed

Video: my new barn is destroyed

Welcome to our family farm in Ontario! Join us as we share what it takes to raise healthy laying hens and produce top-quality Grade A eggs — and now, we’re taking things a step further by producing specialized eggs used in vaccine development!

Every day brings something new: gathering fresh eggs, mixing feed, planting and harvesting crops, and raising our hens from day-old chicks to productive, happy birds. Once the chores are done, the work doesn’t stop — you’ll find us fixing equipment, welding, restoring classic cars, or tackling unexpected projects around the farm.

If you love farm life, agriculture, and behind-the-scenes action, hit that subscribe button and come along for the ride. There’s always something exciting happening on the farm — and we can’t wait to share it with you!