Farms.com Home   News

Plant Regulatory Proteins 'Tagged' With Sugar

IMAGE
IMAGE: THIS IS AN ILLUSTRATION SHOWING HOW A SUGAR MOLECULE IS ATTACHED TO THE PROTEIN WHEN IT UNDERGOES THE O-GLCNACYLATION MODIFICATION PROCESS.
 
New work from Carnegie's Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or "tagging" by sugars after the protein is assembled. Their work uncovers both similarity and distinction between plants and animals in their use of this protein modification. It is published by Proceedings of the National Academy of Sciences.
 
The blueprint for making all proteins is encoded in DNA. The genetic code tells the cellular protein-making apparatus the correct order in which to string together the amino acids that are the building blocks of every protein. Often, after their DNA code has been translated into the amino acid chain, newly synthesized proteins are further modified with different chemical moieties.
 
A common form of post-translational modification in animal cells has the tongue-twisting name of O-GlcNAcylation (pronounced oh-gluck-nakel-ation). It is a process by which certain amino acids in proteins get attached to a sugar molecule, and this modification impacts a wide array of cellular functions. In animals, changes to this process are associated with neurodegeneration, diabetes, cardiovascular diseases, and cancer. Embryos lacking the enzyme that accomplishes this modification cannot survive.
 
It was already known that O-GlcNAcylation takes place in plant cells, too. Plants in which the process is impeded show defects in light response, flower development, root growth, and leaf structure, among other things. However, much about which actual plant proteins undergo this modification had remained mysterious until now.
Click here to see more...

Trending Video

Not only is corn getting sweatier, it's getting smarter

Video: Not only is corn getting sweatier, it's getting smarter


Over the past several weeks, much of the U.S. Midwest has experienced prolonged episodes of extreme heat, a trend also observed in other major corn-producing regions of North America such as eastern South Dakota, southern Ontario, and parts of Kansas and Missouri. These high-temperature events can place significant physiological stress on maize (Zea mays L.), which is cultivated on approximately 90 million acres across the United States, with leading production in Iowa, Illinois, Nebraska, and Minnesota. Like all maize, Bayer’s PRECEON™ Smart Corn System is subject to transpiration-driven water loss under high heat. However, this system incorporates agronomic traits designed to improve standability through enhanced stalk strength, thereby reducing lodging risk during stress conditions. Furthermore, the system supports precision agriculture practices by enabling more targeted fertilizer and crop protection applications. This approach not only helps to optimize input efficiency but also contributes to maintaining or increasing yield potential under variable environmental stresses such as heat waves, which are becoming more frequent in corn belt and fringe production regions.