Farms.com Home   News

Researchers can now quickly, accurately scan for nutrient content in the produce aisle

Texas A&M AgriLife scientists find fruitful applications of Raman spectroscopy in food production, from the field to the grocery store
 
 
Mark Krimmer, an undergraduate student (left), Dmitry Kurouski (center) and Charles Farber, a third-year graduate student (right) demonstrate how to scan grain with a handheld Raman spectrometer.
 
The first quick, accurate, nondestructive and portable way to scan produce for nutrients has been demonstrated by a team of Texas A&M AgriLife Research scientists. The same scan can also identify diseases in living plants before visible symptoms appear.
 
The results were published in September in the chemistry journal ACS Omega, in an article titled “Rapid and non-invasive typing and assessment of nutrient content of maize kernels using a hand-held Raman spectrometer.” The team was led by Dmitry Kurouski, Ph.D., assistant professor of biochemistry and biophysics at the Texas A&M University College of Agriculture and Life Sciences.
 
“The method could eventually be used to quickly estimate the economic value of grain in a field or grain elevator, or predict grain’s starch content,” Kurouski said. “This could change the economy for farmers and consumers.”
 
The analysis of corn nutrient content with a portable Raman system “is very impressive and opens the path for field use in various agricultural applications,” said Torsten Frosch, Ph.D., an expert in spectroscopic sensors who was not involved in the study. Frosch leads the spectroscopic sensors group at Leibniz Institute of Photonic Technology, Abbe Center of Photonics, Friedrich Schiller University Jena in Germany.
 
Kurouski and his team scanned corn kernels and plants by Raman spectroscopy, which measures how molecules scatter harmless laser light. A handheld spectrometer the size of a kitchen scale was used to scan six different red or yellow corn kernels. Each scan took about a second and provided data to calculate levels of protein, carbohydrates, fiber and carotenoids inside each grain. Established methods of nutrient analysis — which are either less accurate or more time consuming than the team’s method, or destroy samples — confirmed the results.
 
“That’s huge,” Kurouski said. “When it comes to personal diet, if I have this technology then I can scan food that I consume, determining its nutrient value right on the spot.”
 
The researchers then used the same tool to scan the light scattering signatures of corn plants growing in a field to identify the different varieties. Corn was the country’s largest crop in 2019, according to the U.S. Department of Agriculture, and identifying corn varieties in the field would be helpful for both plant breeders and farmers. Other potential applications of the technique abound in food production. In a study published in May, the team diagnosed the devastating citrus greening disease by observing telltale signs inside plant structures months before any visible symptoms appeared.
 
 
Click here to see more...

Trending Video

From Conventional to Regenerative: Will Groeneveld’s Journey Back to the Land

Video: From Conventional to Regenerative: Will Groeneveld’s Journey Back to the Land

"You realize you've got a pretty finite number of years to do this. If you ever want to try something new, you better do it."

That mindset helped Will Groeneveld take a bold turn on his Alberta grain farm. A lifelong farmer, Will had never heard of regenerative agriculture until 2018, when he attended a seminar by Kevin Elmy that shifted his worldview. What began as curiosity quickly turned into a deep exploration of how biology—not just chemistry—shapes the health of our soils, crops and ecosystems.

In this video, Will candidly reflects on his family’s farming history, how the operation evolved from a traditional mixed farm to grain-only, and how the desire to improve the land pushed him to invite livestock back into the rotation—without owning a single cow.

Today, through creative partnerships and a commitment to the five principles of regenerative agriculture, Will is reintroducing diversity, building soil health and extending living roots in the ground for as much of the year as possible. Whether it’s through intercropping, zero tillage (which he’s practiced since the 1980s) or managing forage for visiting cattle, Will’s approach is a testament to continuous learning and a willingness to challenge old norms.

Will is a participant in the Regenerative Agriculture Lab (RAL), a social innovation process bringing together producers, researchers, retailers and others to co-create a resilient regenerative agriculture system in Alberta. His story highlights both the potential and humility required to farm with nature, not against it.