Farms.com Home   News

Some Crops Tolerate Ozone Pollution Better Than Others, Study Finds

Differences in the photosynthetic "machinery" of certain crop plants can make them more or less prone to harm caused by ground-level ozone pollution, according to a recent Proceedings of the National Academy of Sciences paper published by a team of Agricultural Research Service (ARS) and University of Illinois scientists in Urbana-Champaign (UIUC). 

The findings—that so-called "C4" crops like corn and sorghum tolerate increased ozone levels better than "C3" crops, like rice or snap beans—open the door to better models for predicting crop responses to the effects of global climate change, as well as developing more resilient varieties that can sustain humanity’s increasing demand for food, feed, fiber and fuel.

A crop is designated as C3 or C4 depending on whether the CO2 it captures from the air is initially converted into a 3-carbon or 4-carbon compound. The general ability of C4 crops to tolerate increases in ground-level (or “tropospheric”) ozone better than C3 crops has long been suspected but not widely tested under actual field conditions, noted Lisa Ainsworth, a research molecular biologist who leads the ARS’s Global Change and Photosynthesis Research Unit at UIUC.

Together with her PNAS co-authors—namely, ARS research plant physiologist Christopher Montes and a UIUC team led by Shuai Li—Ainsworth conducted an extensive analysis of both published and unpublished data—the first set culled from 46 journal papers and the second set from 20 years’ worth of open-air experiments conducted in the United States, India and China.

Specifically, their analysis focused on the responses of five C3 crops (chickpea, rice, snap bean, soybean and wheat) and four C4 crops (sorghum, corn, giant miscanthus and switchgrass) to both ambient levels of ozone and increased concentrations of the gas, ranging from 40 to 100 parts per billion. Of particular interest were changes in the crops’ photosynthetic capacity, chlorophyll content and fluorescence (a form of measurement for the pigment), antioxidant leaf activity, biomass material and seed yield. Drilling down a bit further, the team also compared the ozone sensitivities of hybrid and inbred lines of corn and rice. 

C3 and C4 crops differ in how their leaves capture carbon dioxide from the air as a key component of photosynthesis. It is the process by which plants use sunlight to convert carbon dioxide into glucose, a sugar that helps power their growth, repair and development—and, in turn, sustain other forms of life on the planet, including humankind.

While both C3 and C4 crops use the enzyme called rubisco to convert carbon dioxide into sugars, C4 crops isolate rubisco in specialized cells where the concentration of carbon dioxide is very high. This enables higher rates of photosynthesis and greater efficiency of water use. Thus, C4 plants have lower stomatal conductance, resulting in less diffusion of carbon dioxide and ozone into leaves.

According to Ainsworth, the open-air experiments—properly known as "Free-Air Concentration Enrichment (or "FACE")—provide a kind of ground truth about crop sensitivity to ozone (and carbon dioxide) that closed-air studies cannot.

"We’ve used both controlled environments and field studies to investigate crop responses to ozone," said Ainsworth. "The advantage of FACE experiments is the real-world setting for experimentation. Plants are grown in soil, not pots, and there is no disruption of the continuum from soil to plant to atmosphere."

In general, the team reported in their PNAS paper, exposure to increased ozone levels correlated with reduced chlorophyl content, fluorescence and seed yield in C3 crops more than the C4 group.

But there were differences within the two categories of crops as well, with snap bean, rice, wheat, chickpea, soybean, maize, giant miscanthus, sorghum and switchgrass being ranked the most to least ozone sensitive. These findings differ from prior results that suggested soybean was the most sensitive and rice the least. Another finding highlighted in the PNAS paper was that increased ozone inflicted lower grain yield losses in hybrid lines of corn and rice than inbred lines.

The researchers note that current studies would benefit from side-by-side comparisons of the crops under open-air conditions. The protective role of phenolics and other antioxidants in the leaves of C4 crops also warrants further study.

Ainsworth said ozone pollution has risen to the level of other environmental stressors such as pressure from pests and disease, as well as drought and diminished soil health. However, there is hope for better crop resiliency. For example, the genetic variability in them can be key to unlocking traits for greater tolerance or photosynthetic efficiency.  Also, management decisions that farmers can make—such as growing crops in new areas, planting earlier in the season or using later-maturing varieties—could further improve crop tolerance.

Source : usda.gov

Trending Video

The FCDC and AgSmart Bring Plant Breeding to a Wider Audience

Video: The FCDC and AgSmart Bring Plant Breeding to a Wider Audience

In the vast prairies of Alberta, Olds College’s Field Crop Development Centre (FCDC) stands as a beacon of innovation and research in the agricultural world. The institution has become a key player in advancing agricultural technologies and practices. The FCDC’s commitment to applied research has driven them to seek effective means of disseminating their findings and creating a positive impact on the farming community.

One such avenue that aligns with their mission is AgSmart, an event dedicated to showcasing cutting-edge agricultural technologies. The coming together of the FCDC’s annual Field Day and Ag Smart has proved to be a natural fit, fostering a synergy that benefits both parties and propels the agriculture industry forward. The FCDC Field Day took part in conjunction with AgSmart for the first time this week on Aug. 1-2 in Olds, Alta. FCDC Program Director Kofi Agblor and Olds College VP of Development Todd Ormann sat down for an interview with Marc Zienkiewicz to discuss the significance of the two events taking part together and what the future holds.

The Intersection of Research and Technology The essence of the FCDC lies in its dedication to plant breeding and new seed varieties, particularly barley and triticale. While conducting research is essential, it becomes meaningful when its benefits are shared with the wider community. This is where AgSmart steps in, providing a key venue for the FCDC to showcase their research. This union between research and technology creates a holistic and enriching experience for farmers, ranchers, and industry professionals, the pair said.

Seeds as Technology For the FCDC, the partnership with AgSmart goes beyond mere event collaboration. It is about creating an environment that bridges the gap between seeds and smart technology, Ormann said. The college believes that for technology to truly revolutionize agriculture, it must begin with a strong foundation — high-quality seeds. As the saying goes, “it all starts with a seed.” To demonstrate this critical aspect, the collaboration aims to showcase the seed value chain as an integral part of the smartphone.

The Birth of a Powerful Alliance The idea of joining forces emerged when staff realized the potential synergy between AgSmart and the FCDC Field Day. With just a few days separating the two events, a proposal was put forward to merge them. The marketing and communications teams from both sides worked seamlessly to ensure the essence of both events remained intact, creating a powerful alliance that leverages the strengths of each, Agblor said.

Driving Advancements in Breeding For Agblor, the partnership with AgSmart has tremendous potential to drive advancements in breeding and other technology. With technologies like drones and imaging becoming integral to phenotyping, breeding is no longer confined to vast fields to assess thousands of plants manually. Instead, it benefits from the data-rich insights brought about by smart technologies. These advancements make breeding more efficient, precise, and instrumental in shaping the future of agriculture.

Overcoming Challenges Together While the partnership between Olds College and Ag Smart has been a resounding success, there are challenges on the horizon. Securing stable funding for long-term breeding initiatives is crucial to sustain progress. The college is committed to navigating these challenges and investing in agriculture’s future sustainably, Agblor said.