Farms.com Home   News

Controlled-Environment Farming Advancing With Improved Technologies

By Ryan Adams 
 
Thanks to advances in LED (Light Emitting Diodes) lighting, producing crops indoors is now a reality. But will indoor agriculture replace outdoor farming as the technology progresses?
 
Speakers at a forum on indoor production systems or controlled environmental agriculture held at the North Carolina Biotechnology Center in Research Triangle Park, N.C., agreed that the new technology is just one more tool needed to feed a growing world population, but it will never replace conventional outdoor agriculture. However, they all see great promise for the technology.
 
“I’m excited about controlled environment agriculture. There is a lot of potential now that we can control these environments and cater to what the plants really need. We can focus a lot more on quality traits, on flavor and nutrition,” said Dr. Matt DiLeo, director of Elo Life Systems, based in Research Triangle Park, N.C.
 
DiLeo said controlled environment agriculture combined with a suite of new technologies that includes gene editing, genotyping and gene discovery will drive forward improvements in crops faster than has been possible with previous generations of technology.
 

Trending Video

Dr. Emerson Nafziger: Nitrogen Fertilizer Rates for Corn

Video: Dr. Emerson Nafziger: Nitrogen Fertilizer Rates for Corn

The Crop Science Podcast Show, Dr. Emerson Nafziger from the University of Illinois breaks down decades of nitrogen research. From the evolution of N rate guidelines to how soil health and hybrid genetics influence nitrogen use efficiency, this conversation unpacks the science behind smarter fertilization. Improving how we set nitrogen fertilizer rates for rainfed corn is a key focus. Discover why the MRTN model matters more than ever, and how shifting mindsets and better data can boost yields and environmental outcomes. Tune in now on all major platforms!

"The nitrogen that comes from soil mineralization is the first nitrogen the plant sees, and its role is underestimated."

Meet the guest:

Dr. Emerson Nafziger is Professor Emeritus of Crop Sciences at the University of Illinois at Urbana-Champaign, with degrees in agronomy from Ohio State, Purdue, and Illinois. His research has focused on nitrogen rate strategies and crop productivity. He co-developed the Maximum Return to Nitrogen (MRTN) model, which is widely used across the Midwest. His research spans N response trials, hybrid interactions, crop rotation effects, and yield stability.