By Zach Winn
Lanthanides are a class of rare earth elements that in many countries are added to fertilizer as micronutrients to stimulate plant growth. But little is known about how they are absorbed by plants or influence photosynthesis, potentially leaving their benefits untapped.
Now, researchers from MIT have shed light on how lanthanides move through and operate within plants. These insights could help farmers optimize their use to grow some of the world’s most popular crops.
Published today in the Journal of the American Chemical Society, the study shows that a single nanoscale dose of lanthanides applied to seeds can make some of the world’s most common crops more resilient to UV stress. The researchers also uncovered the chemical processes by which lanthanides interact with the chlorophyll pigments that drive photosynthesis, showing that different lanthanide elements strengthen chlorophyll by replacing the magnesium at its center.
“This is a first step to better understand how these elements work in plants, and to provide an example of how they could be better delivered to plants, compared to simply applying them in the soil,” says Associate Professor Benedetto Marelli, who conducted the research with postdoc Giorgio Rizzo. “This is the first example of a thorough study showing the effects of lanthanides on chlorophyll, and their beneficial effects to protect plants from UV stress.”
Inside plant connections
Certain lanthanides are used as contrast agents in MRI and for applications including light-emitting diodes, solar cells, and lasers. Over the last 50 years, lanthanides have become increasingly used in agriculture to enhance crop yields, with China alone applying lanthanide-based fertilizers to nearly 4 million hectares of land each year.
Source : mit.edu