Farms.com Home   News

Swine Worker Precautions During Suspected Outbreaks of Influenza in Swine

To assess the behavior and precautions that swine workers take during suspected influenza outbreaks in swine, six commercial swine farms in the Midwest U.S. region were visited when influenza outbreaks were suspected in herds during the fall/winter of 2012-2013. Use of personal protective equipment (PPE) and type of task performed by swine workers were recorded based on farm representative reports.

Between one to two workers were working on the day of each visit and spent approximately 25 minutes performing work-related tasks that placed them in close contact with the swine. The most common tasks reported were walking the aisles (27%), handling pigs (21%), and handling equipment (21%). The most common PPE were boots (100%), heavy rubber gloves (75%), and dedicated nondisposable clothing (74%). Use of N95 respirators was reported at three farms. Hand hygiene practices were common in most of the farms, but reportedly performed for only 20% to 25% of tasks. 

Source: AASV


Trending Video

Swine Industry Advances: Biodigesters Lower Emissions and Increase Profits

Video: Swine Industry Advances: Biodigesters Lower Emissions and Increase Profits

Analysis of greenhouse gas (GHG emissions) in the Canadian swine sector found that CH4 emissions from manure were the largest contributor to the overall emissions, followed by emissions from energy use and crop production.

This innovative project, "Improving Swine Manure-Digestate Management Practices Towards Carbon Neutrality With Net Zero Emission Concepts," from Dr. Rajinikanth Rajagopal, under Swine Cluster 4, seeks to develop strategies to mitigate greenhouse gas emissions.

While the management of manure can be very demanding and expensive for swine operations, it can also be viewed as an opportunity for GHG mitigation, as manure storage is an emission source built and managed by swine producers. Moreover, the majority of CH4 emissions from manure occur during a short period of time in the summer, which can potentially be mitigated with targeted intervention.

In tandem with understanding baseline emissions, Dr. Rajagopal's work focuses on evaluating emission mitigation options. Manure additives have the potential of reducing manure methane emissions. Additives can be deployed relatively quickly, enabling near-term emission reductions while biodigesters are being built. Furthermore, additives can be a long-term solution at farms where biogas is not feasible (e.g., when it’s too far from a central digester). Similarly, after biodigestion, additives can also be used to further reduce emissions from storage to minimize the carbon intensity of the bioenergy.