Farms.com Home   News

Seed Drill Calibration to Improve Wheat Seed Distribution

By Romulo Lollato
 
Decisions taken prior to wheat planting can account for a large proportion of the success or failure of the wheat crop. These decisions include:
  • selecting a variety well adapted to the area and with a good yield stability record
  • soil sampling to determine fertility needs
  • pre-plant fertilization (N, P, K, lime)
  • tillage for weed control and seedbed preparation (or using a contact herbicide in no-till situations)
  • proper drill calibration
Proper drill calibration can increase the chances of success of the wheat crop by ensuring the amount of seed planted per acre is close to the target.
 
There are several methods to calibrate seed drills. In this article, we discuss the stationary method, which is a simple 4-step method to calibrate a wheat drill prior to planting. In stationary drill calibration, a drill operation is simulated by turning the drive wheel freely above ground, weighing the seeds delivered from the drill spouts, and comparing to a targeted seed weight by length of drill-row.
 
The four steps are:
 
1. Determine seeding density.
 
Targeted seeding density varies within the State of Kansas based on annual precipitation. A target range of seeds per acre based on current K-State recommendations is shown in Table 1.
 
Table 1. Target seeding density based on annual precipitation
 

 

Target seeding density

(seeds per acre)

Annual precipitation

> 20 in

675,000 - 900,000

20 - 30 in

900,000 - 1,125,000

>30 in

1,125,000 - 1,350,000

Irrigated

1,350,000 - 1,800,000

 
2. Determine the number of seeds in 50 drill-row feet based on row spacing and targeted seeding density.
 
Determine the number of linear row feet per acre based on the drill’s row width (Table 2). Next, estimate the number of seeds to be collected in 50 drill-row feet based on row width and the target seeds per acre. This can be done by dividing the number of target seeds per acre by the number of linear row feet per acre based on row width and multiplying the result by 50. Percent emergence can be accounted for by dividing the result by the fraction of emergence (for example, dividing by 0.85 for 85% emergence). Table 2 shows calculations for selected row widths and targeted number of seeds per acre considering 85% emergence.
 
After determining the number of seeds to be collected from 50 drill-row feet, weigh the equivalent amount of seed of each variety you intend to plant. For instance, if the target is 675,000 seeds per acre and row width is 12 inches, a total of 775 seeds need to be planted in a 50 drill-row feet. Assuming 85% emergence, this number increases to 912 seeds (Table 2). Count and weigh 912 seeds from each variety. If no scale is available, place the 912 seeds in a clear graduated cylinder (i.e. a rain gauge) and mark the level for each variety.
 
Table 2. Seeds per 50 drill-row feet as function of row width and target number of seeds per acre. Feet of linear row per acre as a function of row width is also shown.
 

 

Row width
(inches)

Feet of linear row per acre

Target number of seeds per acre

675,000

750,000

900,000

1,125,000

1,350,000

1,800,000

Seeds per 50 drill-row feet

6

87,120

456

506

608

760

912

1,215

7

74,674

532

591

709

886

1,063

1,418

7.5

69,696

570

633

760

950

1,139

1,519

8

65,340

608

675

810

1,013

1,215

1,620

10

52,272

760

844

1,013

1,266

1,519

2,026

12

43,560

912

1,013

1,215

1,519

1,823

2,431

 
3. Determine the number of wheel revolutions needed for 50 drill-row ft.
 
First, attach the seed drill to a tractor and raise the drill off the ground. Measure the drive wheel’s circumference using a tape measure, and divide 50 drill-row feet by the length of the circumference to determine how many times the drive wheel needs to be rotated to account for 50 drill-row feet. For example, if the drive wheel’s circumference is 7 feet, dividing 50 by 7 indicates that the wheel needs to be rotated 7.15 times to account for 50 drill-row feet. Mark a starting point in the wheel with tape (i.e. duct tape) to facilitate counting how many times the wheel is being turned.
 
4. Calibrate the drill. 
 
Adjust the seed meter using the rate chart provided by the manufacturer for the desired seeding rate, which should result in a first approximation of final calibration. Add enough seed of the variety to ensure seed cups will remain covered throughout the calibration process. Rotate the wheel the number of revolutions needed to cover 50 drill-row feet as calculated in step 3 and collect the seed from each spout in a bucket or similar container. The more spouts evaluated, the more accurate the calibration. Weigh the collected seed (or pour it in the marked graduated cylinder from step 2) and compare to the target seed per 50 drill-row feet as determined in step 2. If the collected seed weighs too low or too heavy compared to the target, adjust the metering system to deliver more or less seeds, respectively. Keep a record of the different seeding rates achieved at each setting for future reference. Repeat this process until the number of seeds delivered from the drill spouts matches the target established in step 2.
 

Trending Video

The FCDC and AgSmart Bring Plant Breeding to a Wider Audience

Video: The FCDC and AgSmart Bring Plant Breeding to a Wider Audience

In the vast prairies of Alberta, Olds College’s Field Crop Development Centre (FCDC) stands as a beacon of innovation and research in the agricultural world. The institution has become a key player in advancing agricultural technologies and practices. The FCDC’s commitment to applied research has driven them to seek effective means of disseminating their findings and creating a positive impact on the farming community.

One such avenue that aligns with their mission is AgSmart, an event dedicated to showcasing cutting-edge agricultural technologies. The coming together of the FCDC’s annual Field Day and Ag Smart has proved to be a natural fit, fostering a synergy that benefits both parties and propels the agriculture industry forward. The FCDC Field Day took part in conjunction with AgSmart for the first time this week on Aug. 1-2 in Olds, Alta. FCDC Program Director Kofi Agblor and Olds College VP of Development Todd Ormann sat down for an interview with Marc Zienkiewicz to discuss the significance of the two events taking part together and what the future holds.

The Intersection of Research and Technology The essence of the FCDC lies in its dedication to plant breeding and new seed varieties, particularly barley and triticale. While conducting research is essential, it becomes meaningful when its benefits are shared with the wider community. This is where AgSmart steps in, providing a key venue for the FCDC to showcase their research. This union between research and technology creates a holistic and enriching experience for farmers, ranchers, and industry professionals, the pair said.

Seeds as Technology For the FCDC, the partnership with AgSmart goes beyond mere event collaboration. It is about creating an environment that bridges the gap between seeds and smart technology, Ormann said. The college believes that for technology to truly revolutionize agriculture, it must begin with a strong foundation — high-quality seeds. As the saying goes, “it all starts with a seed.” To demonstrate this critical aspect, the collaboration aims to showcase the seed value chain as an integral part of the smartphone.

The Birth of a Powerful Alliance The idea of joining forces emerged when staff realized the potential synergy between AgSmart and the FCDC Field Day. With just a few days separating the two events, a proposal was put forward to merge them. The marketing and communications teams from both sides worked seamlessly to ensure the essence of both events remained intact, creating a powerful alliance that leverages the strengths of each, Agblor said.

Driving Advancements in Breeding For Agblor, the partnership with AgSmart has tremendous potential to drive advancements in breeding and other technology. With technologies like drones and imaging becoming integral to phenotyping, breeding is no longer confined to vast fields to assess thousands of plants manually. Instead, it benefits from the data-rich insights brought about by smart technologies. These advancements make breeding more efficient, precise, and instrumental in shaping the future of agriculture.

Overcoming Challenges Together While the partnership between Olds College and Ag Smart has been a resounding success, there are challenges on the horizon. Securing stable funding for long-term breeding initiatives is crucial to sustain progress. The college is committed to navigating these challenges and investing in agriculture’s future sustainably, Agblor said.