Farms.com Home   News

One Step Closer to Efficient Cannabis Production

One Step Closer to Efficient Cannabis Production

As nurseries and garden centers fill up with spring landscaping plants, home gardeners owe a lot to a technique called micropropagation, which has proven beneficial to many plants - perhaps soon to include cannabis, thanks to work by UConn researchers in the College of Agriculture, Health, and Natural Resources.

Micropropagation is a technique used for growing large quantities of new plants from fewer "parent" plants, yielding clones with the same, predictable qualities. The cannabis (Cannabis sativa) industry, however, has been largely left out of this beneficial technique, because this species of plant is extremely difficult to micropropagate.

Researchers from UConn - including Associate Professor Jessica Lubell-Brand, Ph.D. student Lauren Kurtz, and Professor Mark Brand, in the Department of Plant Science and Landscape Architecture - have worked through some of the challenges of cannabis micropropagation of hemp. Their method was recently published in HortTechnology.

Currently, the commercial cannabis industry relies on other propagation techniques, such as collecting seeds or taking carefully timed cuttings from stock "mother" plants. These methods require a lot of space and maintenance, since multiple specimens of each line of stock plants must be kept in the event of disease outbreak or plant death.

"Micropropagation produces many more clones than other methods. Since it is not relying on seed, the clones are uniform, and they will perform similarly to the parent plant. Plants that come out of tissue culture also have the benefit of being disease-free, they frequently show enhanced vigor, and you can grow a lot more in less space," says Lubell-Brand.

Plants in tissue culture depend on the grower to assume the role of nature to provide the right balance of nutrients and growth hormones in the culture media, to regulate temperature and light -- everything. For some plants, micropropagation is easy to accomplish, where explants placed in the growing medium will multiply readily. For others, like cannabis, the process requires quite a bit of refining to ensure the production of a large number of healthy plants.

"Cannabis does not really want to be in tissue culture. This research is a lot of trying to figure out, What more does the plant need?" says Lubell-Brand.

Realizing the potential to help meet the needs of the rapidly growing medical cannabis industry, the researchers set out to answer this question and decipher the needs of cannabis in tissue culture. The process requires a lot of trial and error, Lubell-Brand explains.

"We start the culture using shoot tips from greenhouse-grown plants. Then we subculture those and if we suspect something is lacking, for instance, that the plant isn't getting what it needs in the media, we experiment with nutrients like calcium, magnesium, phosphorus, and nitrogen to try to increase the length of time that they grow in culture."

Lubell-Brand says one of the issues with hemp micropropagation is hyperhydricity of the shoots: when the shoots get saturated with water, they become brittle, and they don't grow well.

Lubell-Brand explains that by adjusting the media for the first six weeks in culture while also using vented vessels to increase air flow, they were able to avoid hyperhydricity.

"In addition to creating large quantities of clones of the parent plant, micropropagated plants will very likely show enhanced growth vigor compared to conventional stem propagated plants," she says.

In the medical cannabis industry, consistency and reliability in crops is highly sought after, and micropropagation could deliver both. For growers to get started with the micropropagation technique, some equipment is needed, such as an autoclave and a laminar flow bench to ensure a sterile environment. However, for operations already using tissue culture techniques, the equipment is the same, says Lubell-Brand.

Click here to see more...

Trending Video

Wheat Yields in USA and China Threatened by Heat Waves Breaking Enzymes

Video: Wheat Yields in USA and China Threatened by Heat Waves Breaking Enzymes

A new peer reviewed study looks at the generally unrecognized risk of heat waves surpassing the threshold for enzyme damage in wheat.

Most studies that look at crop failure in the main food growing regions (breadbaskets of the planet) look at temperatures and droughts in the historical records to assess present day risk. Since the climate system has changed, these historical based risk analysis studies underestimate the present-day risks.

What this new research study does is generate an ensemble of plausible scenarios for the present climate in terms of temperatures and precipitation, and looks at how many of these plausible scenarios exceed the enzyme-breaking temperature of 32.8 C for wheat, and exceed the high stress yield reducing temperature of 27.8 C for wheat. Also, the study considers the possibility of a compounded failure with heat waves in both regions simultaneously, this greatly reducing global wheat supply and causing severe shortages.

Results show that the likelihood (risk) of wheat crop failure with a one-in-hundred likelihood in 1981 has in today’s climate become increased by 16x in the USA winter wheat crop (to one-in-six) and by 6x in northeast China (to one-in-sixteen).

The risks determined in this new paper are much greater than that obtained in previous work that determines risk by analyzing historical climate patterns.

Clearly, since the climate system is rapidly changing, we cannot assume stationarity and calculate risk probabilities like we did traditionally before.

We are essentially on a new planet, with a new climate regime, and have to understand that everything is different now.