Farms.com Home   News

Scientists Call for International Investment to Tackle Major Wheat Losses

Scientists Call for International Investment to Tackle Major Wheat Losses

Urgent investment in new tools is needed to address major global losses of wheat crops which cost £22 billion per year.

Leading scientific experts are calling for governments around the world to come together and fund a new international research platform, to reduce the impact of major wheat pathogens and improve global food security.

The John Innes Centre is calling for an internationally coordinated approach to deliver a new 'R-Gene Atlas', which would help identify new genetic solutions conferring disease resistance for crops, which could be bred into commercial wheat varieties.

Globally, we lose one fifth of the projected wheat yield annually to pests and pathogens totaling losses of 209 million tonnes, worth £22 billion ($31 billion). The climate emergency has the capacity to bring further disruption to global food supplies, as a changing environment brings new types of pests and diseases and increases their spread.

To minimise these losses, and to reduce reliance on chemical solutions, the team calls for broader use of disease resistance to be found in the genome of wheat and its wild relatives. The aim is to provide long-lasting molecular protection against wheat's major pathogens including wheat rusts, blotch diseases, powdery mildew, and wheat blast.

In 2016 global trade saw the wheat blast fungus, typically isolated to South America, arrive in Bangladesh, where it destroyed 15,000 hectares of wheat, resulting in yield losses of 25-30% and threatening wheat production across South Asia.

Wheat R genes work by recognising corresponding molecules in the pathogen called effectors. By identifying the effectors present in pathogen and pest populations, more durable combinations or "stacks" of R genes could be designed.

The R-gene atlas will be a free online portal containing this genetic information and enabling breeders to design gene stacks using computer modelling before starting their breeding in the field.

It will enable users to design molecular markers that could be used to find out what resistance genes they already have in their breeding programme or wheat populations.

The idea builds upon the recent surge in genomic resources available to researchers in wheat, facilitated by advancements in sequencing technologies and bioinformatics. In the past few years, researchers at the John Innes Centre and The Sainsbury Laboratory have rapidly identified and cloned resistance genes in wheat and its wild relatives using technologies such as AgRenSeq, MutRenSeq and MutChromSeq.

The new proposal details how the molecular components involved in disease resistance - R genes and effectors - could be captured from both the host and pathogen. Whole genome sequencing would be carried out on diversity panels of wheat, its progenitors and domesticated and wild relatives.

Association genetics, a method of seeking useful genetic variation, could then be used to look for correlations between the host genotype and disease resistance or susceptibility and the genes responsible for these traits could be identified. The researchers calculate it would cost around £41 million ($58.6 million) to establish the new platform at the required scale. Costed, detailed proposals for the R-Gene Atlas are set out in a new article in Molecular Plant.

This would include sequencing diversity panels of the pathogens and 10 host species of wheat, as well as funding 75 scientists across the world to carry out the work.

This, they suggest, could be funded by contributions of £2 million ($2.9 million) per G20 country spread over five years - a minor investment considering the current financial losses across the world to wheat diseases. This extensively collaborative funding model would spread the risk on a project which would have global reward.

"Compared to the scale of the problem in yield losses to pests and pathogens, this represents excellent value for money" says first author Amber Hafeez. "It is unsustainable to continue feeding 20 per cent of our wheat production to pathogens. Our enterprise applies cutting edge science to a global challenge that is increasing due to the climate emergency."

The proposal involves bringing together an international consortium to allow the project to draw upon existing expertise and resources.

"A lot of the pieces of the puzzle already exist, the idea is to bring them together to make sure we don't duplicate efforts," says Dr Brande Wulff, corresponding author of the article. "We see it as a centrally coordinated model distributed around different countries, using existing capacity.

"Current projections suggest there will be 2.1 billion more people to feed by 2050 and developing disease-resistant crops will be a key part of sustainably feeding us all. We're determined to develop new ways to increase our genetic understanding and deploy it for the benefit of sustainable agriculture, but we cannot do this without investment."

Click here to see more...

Trending Video

Why Port Infrastructure is Key to Growing Canada's Farms and Economy

Video: Why Port Infrastructure is Key to Growing Canada's Farms and Economy

Grain Farmers of Ontario (GFO) knows that strong, modern port infrastructure is vital to the success of Canada’s agriculture. When our ports grow, Ontario grain farmers and Canadian farms grow too—and when we grow, Canada grows.

In this video, we highlight the importance of investing in port infrastructure and how these investments are key to growing Ontario agriculture and supporting global trade. The footage showcases the strength of both Ontario’s farming landscapes and vital port operations, including some key visuals from HOPA Ports, which we are grateful to use in this project.

Ontario’s grain farmers rely on efficient, sustainable ports and seaway systems to move grain to markets around the world. Port investments are crucial to increasing market access, driving economic growth, and ensuring food security for all Canadians.

Why Port Infrastructure Matters:

Investing in Ports = Investing in Farms: Modernized ports support the export of Canadian grain, driving growth in agriculture.

Sustainable Growth: Learn how stronger ports reduce environmental impact while boosting economic stability.

Global Trade Opportunities: Improved port and seaway systems help farmers access new global markets for their grain.

Stronger Communities: Investment in ports means more stable jobs and economic growth for rural communities across Ontario and Canada.

We are proud to support the ongoing investment in port infrastructure and to shine a light on its vital role in feeding the world and securing a prosperous future for Canadian agriculture.

Special thanks to HOPA Ports for providing some of the stunning port footage featured in this video.